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Abstract

In the wake of rapid glacial retreat, alpine habitats in the arctic are expanding as freshly
exposed surfaces become vegetated. Many glaciers in alpine cirques have nearly disappeared,
and little is known about the rate of colonization or pioneer communities that develop following
deglaciation. Newly developed habitats may provide refugia for sensitive arctic flora and fauna,
especially in light of polar warming. To assess this process, vegetation communities developing
on two recently deglaciated moraines in the Central Brooks Range were surveyed and compared
with communities along a transect spanning both a glacial chronosequence (40-125,000 years
since deglaciation) and an elevation gradient (1700-500 m) into the Arctic foothills. Results
show that primary succession begins almost immediately following deglaciation. Within forty
years fine-grained and rock substrates hosted small communities of 8-13 vascular and non-
vascular plant species. Many pioneer taxa, especially lichens, persist into later stages of
succession. Overall succession is directional and slow, increasing in species richness for about
10,000 years, after which richness decreases and communities stabilize. This is the first
vegetation study on primary succession in the high Central Brooks Range, providing a missing

link to a vegetation transect along the Arctic Bioclimatic gradient.
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Introduction

The Brooks Range, an Arctic mountain range extending some 1000 km from the Chukchi
Sea to the Alaska/Yukon border, presently separates boreal forest to its south from tundra to its
north. The Brooks Range has been repeatedly glaciated over the last several million years, and
glaciers have deposited numerous moraines and other glacial landforms that are now vegetated.
The glaciers remaining in the highest peaks of the Brooks Range have been retreating rapidly
over the last several centuries, since the end of the Little Ice Age (LIA), and most are now
reduced into high cirques (Figure 1) (Ellis 1978; Pendleton et al. 2015). As these small glaciers
disappear and new surfaces are exposed, fresh substrate becomes available for colonization by
pioneer plant communities during primary succession. Rapid, recent glacial retreat in the central
Brooks Range creates an ideal setting to study the patterns and processes of primary succession in

an arctic-alpine environment.

July 1977, photo: Jim Ellis

Figure 1. (above) Grizzly Glacier cirque photographed by Jim Ellis in July of 1977. (below) The
same general scene photographed by the author in July, 2017. Note, these photographs were
taken from slightly different distances and locations from the glacier. Red arrows indicate
moraine features for comparison of ice mass.



In contrast to the extensive studies of primary succession that have been carried out at
lower latitudes, little is known about processes of plant succession in Arctic mountain ranges,
despite the fact that these environments are now on the front line of rapid climate changes.
Primary succession affects the process of soil development, alters nutrient cycling, and plant
communities formed during this process become the foundations of ecological communities.
Hence changes in vegetation have the potential to create new habitats, accommodate the shifting
ranges of animal taxa, and determine biodiversity. In the rapidly changing Arctic, understanding
the trajectories and rates of these ecological changes could help us predict and manage the
ecological impacts of ongoing climate changes and other disturbances.

Retreating glaciers in the central Brooks Range have left behind a complex mosaic of
different substrates ranging from boulder fields to scattered pockets of fine-grained sediment.
Course-grained habitats possess a relatively harsh microclimate that is ideal for only a small suite
of plants to colonize (e.g., crustose lichens). Fine-grained habitats are more hospitable to a
broader range of plants which require deeper soils with increased nutrient and water availability
for root establishment. These two habitat types occur on glacial deposits of all ages and at all
altitudes (Figure 2), from the crest of the Brooks Range to the foothills abutting the northern

slopes.



Grizzly cirgue ELIA moraine
(~40 y)

A
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Figure 2. Examples of (A) rock and (B) fine-grained substrate relevés on each glacial deposit
surface in order of the estimated age since deglaciation. For a full set of plot photos see
Appendix A.

Arctic environments are inherently more harsh than those at lower latitudes due to colder
climate, shorter growing seasons, and generally lower soil fertility (e.g., Svoboda & Henry 1987;

Olech et al. 2011). Most arctic plants are adapted to these conditions and are vulnerable to

interspecific competition and slight environmental change (see review in Vowles & Bjork 2019).



In harsh environments, where inter-specific competition is generally reduced, colonizing plants
tend to facilitate later successional plants. Early successional species facilitate later successional
species by increasing available nutrients and creating more hospitable microclimate conditions
(Svoboda & Henry 1987; Chapin et al. 1994; Callaway & Walker 1997; Anthelme et al. 2014;
Reid et al. 2015).

At low altitudes in the Arctic, habitats on even slightly raised topographic features (e.g.,
moraines, kames & pingos), can reflect plant communities found in the alpine. For example,
many of these communities are dominated by non-vascular plants such as lichens and bryophytes
(Olech et al. 2011), whereas lowland communities at lower latitudes tend to be dominated by
vascular plant growth forms (Chapin et al. 1994; Lang et al. 2012). Certain plant growth forms
are commonly found in both Arctic and Arctic-alpine habitats, but are less common at lower
latitudes such as plants that grow in low cushions or mats. This growth form allows for
facilitation of neighboring species as well as self-proliferation by increasing soil accumulation,
nutrient availability and regulating microclimate conditions (Reid et al. 2015). Therefore, along
an Arctic glacial chronosequence and elevation gradient, the effect of altitude on plant
community formation may be buffered by distinct environmental similarities between lowland
and alpine sites.

Globally, the Arctic is at the forefront of climate change impacts, which are particularly
amplified by loss of sea ice in the Arctic Ocean (Hinzman et al. 2005; Wendler et al. 2010; Bhatt
et al. 2010). However, the impacts and severity of climate change vary across Arctic regions, and
warming is having more drastic impacts on plant communities at lower altitudes. This is due in
part to direct effects on frozen ground containing ice-rich permaftrost (e.g., thermokarsting and

cryoturbation; Olech et al. 2011; Walker et al. 2015), which is less common in the arctic-alpine,



than in tundra communities at lower altitudes. Low altitude sites are also more impacted by the
expansion of shrubs (shrubification) across the tundra, which is limited in the arctic-alpine by
environmental conditions such as cooler and shorter growing seasons, lower soil quality, and
generally less substrate stability (Cornelissen et al. 2001; Lang et al. 2012; Vowles & Bjork
2019). Anthropogenic disturbance (e.g., road construction & infrastructure development) is also
more common at lower elevations, often reducing or changing habitat, resulting in similar
impacts on vegetation communities as warming such as increased flooding, alteration of
microtopography, and loss of organic layer (Walker et al. 2015) . Differences between alpine and
lowland environments in the Arctic will likely result in warming under current conditions to be
beneficial to alpine communities by causing alpine vegetation to proliferate and increase in floral
biodiversity, and harmful to lowland communities causing a loss in habitat and floristic diversity
(Carlson et al. 2014). Identifying rates and patterns of community development during primary
succession in the arctic-alpine is important for understanding how communities respond to
change. Contrasting early successional plant communities with plant communities on similar
substrates at lower altitudes is important for predicting how young communities will develop
over time, and what environmental factors drive development.

By comparing the present-day vegetation on two common habitat types across a glacial
chronosequence and elevation gradient, I assessed the effects of altitude, time, and environment
on the nature of plant communities and the trajectory of succession. This research is based on
two main goals focusing on primary succession in the arctic-alpine and successional processes
over the course of 125,000 years and 900m in altitude: 1.) document community development
of new alpine habitat in a recently deglaciated cirque. 2.) use older glacial deposits at varying

elevations to form an understanding of how pioneer plant communities develop over time.



These goals were substantiated by addressing two major objectives: 1.) determine what plant
species are pioneer colonizers, what communities they form and at what general pace
colonization takes place. 2.) determine how long plant communities undergo succession along
this transect, how communities change, and what major environmental factors drive these

changes.
Background

Study Area and Geology

The Brooks Range is part of the physiographic division known as the Arctic
Mountains province consisting of mountains and hills generally around 2,000 m above sea
level (a.s.l.) carved from Paleozoic and Mesozoic sedimentary rocks (Wahrhaftig 1965).
Underlying bedrock in the Brooks Range is composed chiefly of Paleozoic (345-600 million
years) limestone, shale, quartzite, slate and schist, with granitic intrusions in some of the
higher regions (Wahrhaftig 1965). The Atigun Pass area is a complex mixture of highly
resistant Kanayut Conglomerate, sandstone, shale, and limestone (Ellis 1978; Mull & Adams
1989) and includes the glacial deposits that were analyzed as the alpine relevés in this study.

The Arctic Foothills province is divided into the northern and southern foothills. The
southern foothills are between 370 and 1070 m above sea level, characterized by irregular
buttes, knobs, mesas, and east-trending ridges intervening with undulating tundra plains
(Wahrhaftig 1965). They are underlain by diverse sedimentary rocks of Devonian to
Cretaceous age with mafic intrusions (Wahrhaftig 1965). These Southern foothills (hereafter
referred to as “foothills”) abut the northern slope of the Central Brooks Range and include

the glacial deposits that were analyzed as the lowland relevé locations in this study.



Glacial history

During the Pleistocene, large valley glaciers developed in the Brooks Range (Wahrhaftig
1965). The grinding action of these glaciers enlarged valley heads into cirques and steepened
mountainsides leaving jagged ridges (arétes) and spires (Wahrhaftig 1965). Three major glacial
advances occurred in the central Brooks Range during the last 200,000 years: the Sagavanirktok
River (SAG; 125,000-150,000 yr), the Itkillik I (ITKI; 50,000-70,000 yr), and the Itkillik 1T
(ITKII; 10,000-25,000 yr) (Table 1, Figure 3; Hamilton & Porter 1975; Ellis 1978). All three of
these advances involved valley glaciers descending out of the Brooks Range into the adjacent
foothills where they deposited sweeping moraine systems and extensive outwash terrains below
800 m. After retreating into high cirques during the early Holocene (ca. 11,000-8000 years ago),
glaciers underwent a series of minor Neoglacial re-advances starting ca. 4000 years ago that
deposited prominent end moraines in cirques above 1800 m a.s.l.. The final Neoglacial advances
of cirque glaciers took place during the Little Ice Age (LIA) (ca. AD 1250-1850). Little Ice Age
advances left end moraines located inside those deposited during their maximum Neoglacial

advances (Hamilton & Porter 1975; Ellis 1978).
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